Modeling RF Systems

Andrea Borgioli Tom Cwik

borgioli@canyonlands.jpl.nasa.gov cwik@jpl.nasa.gov

High Performance Computing Group

Imaging and Spectrometry Systems Technology Section

Intent

 To study the feasibility of modeling Quasi-Optical Systems with software packages based on an optical approach

Motivation

 Different software packages exist. Some are based on a pure electromagnetic approach and some on an optical approach.

 Understanding the differences between these methods is needed for their appropriate use.

Plan

 A comparison between a scalar diffraction theory and a full vector diffraction theory when used for modeling electrically large systems (such as telescopes, reflector antennas...)

 A better understanding of the applicability of different software tools

Overview

- Basic description
 - Full vector theory (Physical Optics)
 - Scalar theory (Fourier Optics)
 - Mathematical differences
- Examples and Results
 - POPO (Physical Optics)
 - MACOS (Fourier Optics)
- Conclusions

Test systems

(Part of the) Deep Space
Network antenna
X-band (8.45 GHz)
D/λ ~ 100

(Microwave Instrument for the Rosetta Orbiter)

MIRO Telescope

240/560 GHz

D/λ ~ 250/600

Always start from Maxwell's equations:

$$\nabla \times \mathbf{E} = -\mu \, \frac{\partial \, \mathbf{H}}{\partial \, t} \qquad , \qquad \nabla \cdot \epsilon \, \, \mathbf{E} = 0$$

$$\nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} \qquad , \quad \nabla \cdot \mu \mathbf{H} = 0$$

$$\mathbf{E}(\mathbf{P}) = \frac{1}{4\pi} \int_{\mathbf{S}} \{(\mathbf{n} \times \mathbf{E}) \times \nabla \psi - j\omega \mu_{o} \psi (\mathbf{n} \times \mathbf{H}) + \frac{1}{j\omega \epsilon_{o}} [(\mathbf{n} \times \mathbf{H}) \cdot \nabla] \nabla \psi \} d\mathbf{S}$$

$$\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \{(\mathbf{n} \times \mathbf{H}) \times \nabla \psi + j\omega \varepsilon_{o} \psi (\mathbf{n} \times \mathbf{E}) - \frac{1}{j\omega \mu_{o}} [(\mathbf{n} \times \mathbf{E}) \cdot \nabla] \nabla \psi \} dS$$

'Vector diffraction integrals'

In terms of equivalent surface distributions

$$\mathbf{E}(\mathbf{P}) = \frac{1}{4\pi} \int_{\mathbf{S}} \{-\mathbf{M}_{\mathbf{s}} \times \nabla \psi - j\omega \mu_{\mathbf{o}} \psi \mathbf{J}_{\mathbf{s}} + \frac{1}{j\omega \epsilon_{\mathbf{o}}} [\mathbf{J}_{\mathbf{s}} \cdot \nabla] \nabla \psi \} d\mathbf{S}$$

$$\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \{\mathbf{J}_{s} \times \nabla \psi + j\omega \boldsymbol{\epsilon}_{o} \psi \mathbf{M}_{s} - \frac{1}{j\omega \mu_{o}} [\mathbf{M}_{s} \cdot \nabla] \nabla \psi \} dS$$

 The vector diffraction integrals are often applied to a metallic reflecting surface (reflector).

$$\Rightarrow \frac{\mathbf{E}(P) = \frac{1}{4\pi} \int_{S} \left\{ -j\omega\mu_{o}\psi\mathbf{J}_{s} + \frac{1}{j\omega\epsilon_{o}} \left[\mathbf{J}_{s} \cdot \nabla\right] \nabla\psi \right\} dS}{\mathbf{H}(P) = \frac{1}{4\pi} \int_{S} \left\{ \mathbf{J}_{s} \times \nabla\psi \right\} dS}$$

• Evaluation of it requires the solution of an **integral equation**, since the induced surface-current distribution in the integral is unknown

An approximations of the currents is needed

Physical Optics approximation:

$$J_s = 2 (n \times H_{inc})$$
 on front surface

$$J_s = 0$$
 elsewhere

Maxwell's equations

approximations

(medium: linear, isotropic,

homogeneous and nondispersive)

$$U(P) = \frac{1}{4p} \iint_{S} \left(\frac{\P \mathbf{y}}{\P n} U - \mathbf{y} \frac{\P U}{\P n} \right) ds$$

'Scalar diffraction integral'

 Fresnel/Fraunhofer formulas allow diffraction pattern calculations to be reduced to relatively simple expressions

 The Fresnel approximation (~ near field): the spherical wavefronts are replaced by parabolic wavefronts

$$U(x,y) = (...)F\left\{U(\epsilon,\eta) e^{j\frac{k}{2Z}(\epsilon^2 + \eta^2)}\right\}\Big|_{f_x = x/\lambda z}$$

$$f_y = y/\lambda z$$

F = Fourier Transform

 The Fraunhofer approximation (far field): the spherical wavefronts are replaced by flat wavefronts

$$U(x,y) = (...) F\{ U(\epsilon,\eta) \} \Big|_{f_x = x/\lambda z}$$

$$f_y = y/\lambda z$$

F = Fourier Transform

Are They Equivalent?

 The scalar formulation is not generally valid for an open surface (vector integrals are not always equivalent to scalar integrals)

Optical approach

Full Electromagnetic approach

Interpretation

Physical Optics

Fresnel/Fraunhofer formula

- Axially directed component of the currents are neglected
- Error is small on the optical axis, provided the angle of observation is small

Test Codes

- POPO ('Physical Optics-Physical Optics')
 - based on a full electromagnetic theory
 - very accurate (our 'true' solution)
- MACOS ('Modeling and Analysing for Controlled Optical Sytems')
 - based on Fourier Optics
 - successfully used for modelling optical systems

Test system: DSN subsystem

Far field pattern on XY (plane of symmetry)

Far field pattern on YZ (plane of asymmetry)

Ray tracing only on XY (plane of symmetry)

Ray tracing only on YZ (plane of asymmetry)

Test system: MIRO telescope

Far field pattern of main reflector at 240 GHz

Computational tradeoff

POPO

(radiation integral over the surface)

computationally very expensive

MACOS

(Fast Fourier Transform)

computationally inexpensive

Conclusions

 Optics-based software packages applied to electrically large systems may not provide accurate representations for the fields in regions of interest, but since they are computationally advantageous they can be a useful support in early design phases of RF systems.

